Shrinkage Estimation Strategies in Generalised Ridge Regression Models: Low/High‐Dimension Regime
نویسندگان
چکیده
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملInterquantile Shrinkage in Regression Models.
Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant e...
متن کاملShrinkage Estimation of Regression Models with Multiple Structural Changes
In this paper we consider the problem of determining the number of structural changes in multiple linear regression models via group fused Lasso (least absolute shrinkage and selection operator). We show that with probability tending to one our method can correctly determine the unknown number of breaks and the estimated break dates are sufficiently close to the true break dates. We obtain esti...
متن کاملA MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملEstimation of Markov Regime-Switching Regression Models with Endogenous Switching
Following Hamilton (1989), estimation of Markov regime-switching regressions typically relies on the assumption that the latent state variable controlling regime change is exogenous. We relax this assumption and develop a parsimonious model of endogenous Markov regime-switching. Inference via maximum likelihood estimation is possible with relatively minor modifications to existing recursive fil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Statistical Review
سال: 2020
ISSN: 0306-7734,1751-5823
DOI: 10.1111/insr.12351